
Data Structures
CSCI H343, Fall 2021 Midterm

Name:

This exam has 11 questions, for a total of 100 points.

1. 8 points What is the output of this Java program?

public class Node {
Node left, right; int data;
Node(int d) { data = d; }
public void f() {

System.out.print("(");
if (left != null) {

left.f();
System.out.print("_");

}
if (right != null) {

right.f();
System.out.print("_");

}
System.out.print(data);
System.out.print(")");

}

public static void main(String[] args) {
Node a = new Node(0);
Node b = new Node(1);
Node c = new Node(2);
Node d = new Node(3);
a.left = b;
a.right = c;
c.left = d;
a.f();

}
}

Solution:

((1)_((3)_2)_0)



H343 Data Structures Midterm Fall 2021

Name:

2. 8 points Consider this binary tree.

1

xx &&
2

��

3

�� ��
4 5 6

The following questions are with respect to an inorder traversal.

1. Which node comes immediately after node 1?

2. Which node comes immediately after node 5?

3. Which node comes immediately before node 5?

4. Which node comes immediately before node 1?

Solution: 2 points each

1. 5

2. 3

3. 1

4. 4

3. 10 points For the following Node class in a binary tree, Fill in the blanks to complete
the following implementation of the next method that returns the node that comes after
the current node with respect to an inorder traversal, if there is one, and null if there
is none.

class Node {
T data;
Node left, right, parent;
Node next() {

if (right == null) {
return ___(a)___;

} else {
return ___(b)___;

}
}
Node first() {

if (left == null) {
return this;

} else {
return ___(c)__;

}
}
Node nextAncestor() {

Page 2 of 12



H343 Data Structures Midterm Fall 2021

Name:

Node n = this, p = parent;
while (p != null && ___(d)___) {

n = p;
p = ___(e)___;

}
return p;

}
}

Solution: Rubric: 2 points each

a) nextAncestor()
b) right.first()
c) left.first()
d) p.right == n
e) p.parent

Page 3 of 12



H343 Data Structures Midterm Fall 2021

Name:

4. 8 points The divide function is meant to divide integer m by the integer n, returning
the quotient q and remainder r. The integers m and n are required to be non-negative.
The correctness criteria for divide is that the quotient q and remainder r should satisfy

m = nq + r 0 ≤ r < n

Pair<Integer, Integer> divide(int m, int n) {
int q = 0;
int r = m;
while (r >= n) {

r = r - n;
q = q + 1;

}
return new Pair<>(q, r);

}

1. State the loop invariant for the while loop.

2. Explain why the loop invariant is true before the start of the loop.

3. For a hypothetical iteration of the loop, explain why the loop invariant is true at
the end of the loop body, assuming only that the loop invariant was true at the
beginning of the loop body.

4. Explain why the loop invariant combined with the loop condition being false logi-
cally implies the correctness criteria for the divide function.

Solution:

1. The loop invariant ism = nq+r and 0 ≤ r. (2 points) (OK if justm = nq+r.)

2. m = n · 0 +m (2 points) and from 0 ≤ m we have 0 ≤ r.

3. We may assume to m = nq+r at the beginning of the loop body. Let r′ = r−n
and q′ = q + 1, so r′ and q′ are the values of r and q at the end of the loop
body. We need to show that m = nq′ + r′.

nq′ + r′ = n(q + 1) + (r − n) = nq + n+ r − n = nq + r = m

(2 points)
Also, from the loop r ≥ n we have 0 ≤ r − n.

4. The negation of r ≥ n is r < n, and the loop invariant is m = nq+r and 0 ≤ r,
which are identical to the correctness criteria for divide. (2 points)

Page 4 of 12



H343 Data Structures Midterm Fall 2021

Name:

5. 12 points What is the big-O time complexity of the following flood method in terms
of the total number of tiles, represented by n? Provide an argument for your answer
that analyzes every statement in the method and how their individual time complexities
combine into the total time complexity.

public static void flood(WaterColor color,
LinkedList<Coord> flooded_list,
Tile[][] tiles,
Integer board_size) {

HashSet<Coord> flooded_set = new HashSet<>(flooded_list);
ArrayList<Coord> flooded_array = new ArrayList<>(flooded_list);
for (int i = 0; i != flooded_array.size(); ++i) {

Coord c = flooded_array.get(i);
for (Coord n : c.neighbors(board_size)) {

if (!flooded_set.contains(n)
&& tiles[n.getY()][n.getX()].getColor() == color) {

flooded_array.add(n);
flooded_list.add(n);
flooded_set.add(n);

}
}

}
}

Solution:

The construction of the flooded set and flooded array are both O(n). (2 points)
Next we analyze the body of the outer for loop.

• The call flooded_array.get(i) is O(1). (2 points)

• The inner for loop may iterate up to 4 times, so it doesn’t matter (1 point).

• The call to flooded_set.contains(n) is O(1). (2 points)

• The n.getX(), n.getY(), getColor(), and the add methods are all O(1) and the
access to the tiles array is O(1) (1 point).

The maximum time complexity of the operations inside the outer for is O(1), and
there are at most n iterations because the flooded_list may contain up to n coor-
dinates. so the time complexity of the outer for is O(n) (2 points). Adding this
with the time for the construction of the flooded set and flooded array results in
a time complexity of the flood method of O(n) (2 points).

6. 7 points Draw the result of inserting key 8 into the following Binary Search Tree.

Page 5 of 12



H343 Data Structures Midterm Fall 2021

Name:

6

xx ''
1

��

12

~~ !!
4 9 15

Solution: 6

xx ))
1

��

12

~~ !!
4 9

��

15

8

Page 6 of 12



H343 Data Structures Midterm Fall 2021

Name:

7. 10 points Write the Java code for the implementation of the below find first equal

function. Recall that the Iterator interfaces is defined as follows.

interface Iterator<T> {
T get();
void set(T e);
void advance();
void advance(int n);
boolean equals(Iterator<T> other);
Iterator<T> clone();

}

The find first equal function returns an iterator pointing to the first element in the
half-open range [begin,end) that equals the ‘x‘ parameter. If no element equals ‘x‘,
return the end iterator. The begin and end iterators must not be changed.

public static <E> Iterator<E>
find_first_equal(Iterator<E> begin, Iterator<E> end, E x) {

}

Solution:

public static <E> Iterator<E>
find_first_equal(Iterator<E> begin, Iterator<E> end, E x) {

Iterator<E> i = begin.clone();
for (; !i.equals(end) && !i.get().equals(x); i.advance()) { }
return i;

}

Rubric:

• Use of clone to create temporary iterator. (1 point)

• Use of iterator equals method to check if iterator has reached the end. (1
point)

• Use of iterator get to access the current element. (1 point)

• Use of advance to move the iterator. (1 point)

• Correct algorithm logic and return value. (6 points)

(It’s OK to use a while loop instead of a for loop.)

Page 7 of 12



H343 Data Structures Midterm Fall 2021

Name:

8. 12 points Which of the following trees are binary search trees?
Which of them are AVL trees?

(a) 1

2

3

(b) 10

7 18

15

(c) 10

5 12

2 3

8

Solution:

(a) is a BST but not an AVL tree. (4 points)

(b) is a BST and an AVL tree. (4 points)

(c) is not a BST and is not an AVL tree. (4 points)

Page 8 of 12



H343 Data Structures Midterm Fall 2021

Name:

9. 8 points Show that 3n+ n log2 n ∈ O(n2) using the definition of big-O.

Solution:

By the definition of big-O, we need to show that (2 points)

∃kc.∀n ≥ k. 3n+ n log2 n ≤ cn2

Choose c = 1 (3 points).

Towards finding a value for k, we compute a table for a few values of n:

n log2 n n log2 n 3n 3n+ n log2 n n2

1 0 0 3 3 1
2 1 2 6 8 4
4 2 8 12 20 16
8 3 24 24 48 64
16 4 64 48 112 256
64 6 384 192 576 4096

Choose k = 8 (3 points).

(Note: there are many other choices for c and k that are also correct, such as c =
2, k = 2.)

Page 9 of 12



H343 Data Structures Midterm Fall 2021

Name:

10. 8 points Given the following AVL binary search tree, remove key 5, maintaining the
binary search tree and AVL properties. Explain each change that you make to the tree
and draw the tree after each change.

5

2 8

1 4 6 10

3 7 9 15

12

Solution:

We first replace node 5 with node 6 (3 points). (Alternatively, one could replace 5
with node 4, see below.) (The height of each node is written inside the brackets.)

6[4]

2[2] 8[3]

1[0] 4[1] 7[0] 10[2]

3[0] 9[0] 15[1]

12[0]

Node 8 is not AVL (2 points), so we rotate 8 to the left (3 points).

6[3]

2[2] 10[2]

1[0] 4[1] 8[1] 15[1]

3[0] 7[0] 9[0] 12[0]

Alternative, if we instead replace 5 with node 4, we get the following tree (3 points).

4[4]

2[1] 8[3]

1[0] 3[0] 6[1] 10[2]

7[0] 9[0] 15[1]

12[0]
Page 10 of 12



H343 Data Structures Midterm Fall 2021

Name:

Node 4 is not AVL (2 points) so we rotate 4 to the left (3 points).

8[3]

4[2] 10[2]

2[1] 6[1] 9[0] 15[1]

1[0] 3[0] 7[0] 12[0]

Page 11 of 12



H343 Data Structures Midterm Fall 2021

Name:

11. 9 points What is the big-O time complexity of the following anagram detection function
in terms of the sum n of the lengths of the two input strings? Provide an argument
for your answer that analyzes each method and loop and how their individual time
complexities combine into the total time complexity.

private static LinkedList<Character> copy_without_spaces(String s) {
LinkedList<Character> c = new LinkedList<>();
for (int i = 0; i != s.length(); ++i) {

if (s.charAt(i) != ’ ’) {
c.add(s.charAt(i));

}
}
return c;

}
public static boolean find_remove(LinkedList<Character> l, Character c) {

Iterator<Character> iter2 = l.iterator();
while (iter2.hasNext())

if (iter2.next() == c) {
iter2.remove();
return true;

}
return false;

}

public static boolean anagram(String s1, String s2) {
LinkedList<Character> l1 = copy_without_spaces(s1);
LinkedList<Character> l2 = copy_without_spaces(s2);
for (Character c1 : l1) {

if (! find_remove(l2, c1))
return false;

}
return l2.size() == 0;

}

Solution: The time complexity of the copy without spaces is O(n) because the
body of the for loop is O(1), it iterates O(n) times, and multiplying yields O(n). (3
points)

The time complexity of the find remove function is O(n) because the body of the
while loop is O(1), it iterates O(n) times, and multiplying yields O(n). (3 points)

The time complexity of the anagram function is O(n2) because the for loop iterates
O(n) times, its body calls find remove which is O(n), so multiplying the times
produces O(n2). (3 points)

Page 12 of 12


