CSCI H343 Data Structures Fall 2024

Hash Tables

Java’s HashMap and HashSet classes are implemented with hash tables

Most programming languages have hash tables built-in or in the standard library.

The Map Abstract Data Type (aka. “dictionary”)

interface Map<K,V> {
   V get(K key);
   V put(K key, V value);
   V remove(K key);
   boolean containsKey(K key);
}

Map<K, Boolean> ~~ Set<K>

Compared to Binary Search Trees, the Map ADT does not provide an ordering of the elements.

Motivation: maps are everywhere!

We could implement the Map ADT with AVL Trees, then get() is O(log(n)).

A simple Map implementation

If keys are integers, we can use an array.

Store items in array indexed by key (draw picture) use None to indicate absense of key.

What’s good?

get() is O(1)

What’s bad?

  1. keys may not be integers
  2. memory hog if the set of possible keys is huge, if much larger than than the number of keys stored in the dictionary.

Prehashing

Prehashing fixes problem 1 by mapping everything to integers. (Textbook calls this the creation of a hash code.)

In Java, o.hashCode() computes the prehash of object o.

Ideally: x.hashCode() == y.hashCode() iff x and y are the same object (but sometimes different objects have the same hash code)

User-definable: a class can override the hashCode method, and should do so if you are overriding the equals method.

Algorithm for prehashing a string (aka. polynomial hash code) Map each character to one digit in a number. But there are 256 different characters, not 10. So we use a different base.

prehash_string('ab') == 97 * 256 + 98
prehash_string('abc') == 97 * (256^2) + 98 * (256^1) + 99

Hashing

Hashing fixes problem 2 (reduce memory consumption).

The word “hash” is from cooking: “a finely chopped mixture”.

Chaining fixes collisions.

Towards proving that the average case time is O(1).

Takeaway: need to grow table size m as n increases so that λ stays small.

hash functions

division method: h(k) = k mod m

need to be careful about choice of table size m

if not, may not use all of the table

table size 4 (slots 0..3)
suppose the keys are all even: 0,2,..

		0 -> 0           (0 mod 4 = 0)
		2 -> 2           (2 mod 4 = 2)
		4 -> 0           (4 mod 4 = 0)
		6 -> 2           (6 mod 4 = 2)
		8 -> 0           (8 mod 4 = 0)
		...

Never used slot 1 and 3.

Good to choose a prime number for m, not close to a power of 2 or 10.

Multiply-Add-and-Divide (MAD) method

h(k) = ((a * k + b) mod p) mod m

where

Student Exercise 1

Using the division method and chaining, insert the keys 4, 1, 3, 2, 0 into a hash table with table size 3 (m=3).

solution

Rehashing

When the load factor gets too high, we need to grow the table.

  1. Allocate a new table that is double the size.

  2. Insert all of the entries from the old table into the new table, using the new table size (the m) in the hash function.

Rehashing is an O(n) operation, but by doubling the same of the table, it doesn’t need to happen very often.