CSCI H343 Data Structures Fall 2024

Binary Search Trees

Idea: use binary trees to implement the Set interface, such that doing a search for an element is like doing binary search.

interface Set<T> {
   void insert(T e);
   void remove();
   boolean member(T e); // aka contains
   ...
}

The Binary-Search-Tree Property: For every node x in the tree,

  1. if node y is in the left subtree of x, then y.data < x.data (or y.data <= x.data for MultiSet, that is, allow duplicates), and
  2. if node z is in the right subtree of x, then x.data < z.data.

We can also use BSTs to implement the Map interface (aka. “dictionary”).

interface Map<K,V> {
   V get(K key);
   V put(K key, V value);
   V remove(K key);
   boolean containsKey(K key);
}

Binary Search Tree and Node Classes

BinarySearchTree is like BinaryTree (has a root) but also has a lessThan predicate for comparing elements. We define Node as a class nested inside BinarySearchTree for convenience:

public class BinarySearchTree<K> implements Set<K> {

    static class Node<K> {
        K data;
        Node<K> left, right;
        // ...
    }

    Node<K> root;
    protected BiPredicate<K, K> lessThan;
	BinarySearchTree(BiPredicate<K, K> less) { lessThan = less; }
    // ...
}

find, search, and contains methods of BinarySearchTree

Book 4.3.1.

Example: Search for 6, 9, 15 in the following tree:

          8
        /   \
       /     \
      3       10
     / \        \
    1   6       14
       / \     /
      4   7   13

The find() method looks for the node with the specified key; if there is none, it returns the parent of where such a node would be.

protected Node<K> find(K key, Node<K> curr, Node<K> parent) {
	if (curr == null)
		return parent;
	else if (lessThan.test(key, curr.data))
		return find(key, curr.left, curr);
	else if (lessThan.test(curr.data, key))
		return find(key, curr.right, curr);
	else
		return curr;
}

The search() method looks for the specified key and returns the node if the key is found and otherwise returns null.

public Node<K> search(K key) {
	Node<K> n = find(key, root, null);
	if (n == null)
	  return null;
	else if (n.data.equals(key)))
	  return n;
	else
	  return null;
}

The contains() method returns true if the key is found and false otherwise.

public boolean contains(K key) {
	Node<K> p = search(key);
	return p != null;
}

What is the time complexity? O(h), where h is the height of the tree.

insert method of BinarySearchTree

Textbook 4.3.3.

Similarly we can perform insertions on BSTs. The insert() method adds the given key to the tree.

public void insert_rec(K key) {
	root = insert_helper(key, root);
}

protected static Node<K> insert_helper(K key, Node<K> curr) {
	if (curr == null)
		return new Node<>(key, null, null);
	else if (lessThan.test(key, curr.data)) {
		curr.left = insert_helper(key, curr.left);
        return curr;
	} else if (lessThan.test(curr.data, key)) {
		curr.right = insert_helper(key, curr.right);
        return curr;
	} else {
		// duplicate; do nothing
        return curr;
	}
}

What is the time complexity? O(h), where h is the height of the tree.

In-class Exercise: insert and return the inserted node

Insert into a binary search tree, returning the inserted node, or null if the key is already in the tree.

This can be accomplished using the find method to do most of the work of finding the location for the insert.

Fill in the blanks:

public Node<K> insert(K key) {
	Node<K> n = find(key, root, null);
	if (n == null){
		
		
	} else if (lessThan.test(key, n.data)) {
		
		
	}  else if (lessThan.test(n.data, key)) {
		
		
	} else {
		
        
    }
}

Solution

remove method of BinarySearchTree

Book 4.3.4.

          |              |
        z=o              A
           \       ==>
            A
            |            |
          z=o            A
           /       ==>
          A
             |
           z=o
            / \
           A   B

The main idea is to replace z with the node after z, which is the first node y in subtree B. We then recursively delete y from B.

What is the time complexity? Let h be the height of the tree. The time complexity is O(h).

Solution for remove() (similar to book Figure 4.25):

public void remove(K key) {
	root = remove_helper(root, key);
}

private Node remove_helper(Node<K> curr, K key) {
	if (curr == null) {
		return null;
	} else if (lessThan.test(key, curr.data)) { // remove in left subtree
		curr.left = remove_helper(curr.left, key);
		return curr;
	} else if (lessThan.test(curr.data, key)) { // remove in right subtree
		curr.right = remove_helper(curr.right, key);
		return curr;
	} else {      // remove this node
		if (curr.left == null) {
			return curr.right;
		} else if (curr.right == null) {
			return curr.left;
		} else {   // two children, replace with first of right subtree
			Node<K> min = curr.right.first();
			curr.data = min.data;
			curr.right = remove_helper(curr.right, min.data);
			return curr;
		}
	}
}