
Data Structures
CSCI H343, Fall 2021 Final

Name:

This exam has 11 questions, for a total of 100 points.

1. 8 points Implement the put method for the following HashTable class that uses sepa-
rate chaining. The put method should change the hashtable so that the next time the
get method is invoked with the same key, the given value will be returned. You may
use the hash method (without implementing) to compute the hash of a key. You may
assume that each linked list in the table is not null.

class Entry<K,V> {
K key;
V value;
Entry(K k, V v) { key = k; value = v; }

}

public class HashTable<K,V> implements Map<K,V> {
private LinkedList<Entry<K,V>>[] table;
private int hash(K k) { ... }
private V get(K k) { ... }
public void put(K key, V value) {

Solution:

public void put(K key, V value) {
int h = hash(key); // 1 point
LinkedList<Entry<K,V> > L = table[h]; // 1 point
Entry e = null;
for (Entry<K,V> e2 : L) // 2 points

if (e2.key.equals(key))
e = e2;

if (e == null) {
Entry<K,V> new_e = new Entry(key, value); // 1 point
table[h].add(new_e); // 2 points

} else {
e.value = value; // 1 point

}
}

H343 Data Structures Final Fall 2021

Name:

2. 10 points Fill in the blanks of the insert method of the BinomialQueue class. Recall

that a Binomial Queue maintains a forest (list) of Binomial Heaps ordered by their height
(low to high), where each Binomial Heap in the forest has a unique height. The insert
method of the BinomialQueue takes a Binomial Heap and a forest and returns a new
forest that includes the given binomial heap and that is still ordered by height and each
heap in the forest has a unique height.

The link method of the BinomialHeap class takes two Binomial Heaps of the same
height and combines them to form a Binomial Heap of one greater height. We represent
a forest of binomial heaps with the PList class and null represents an empty forest.

class BinomialHeap<K> {
int height;
BinomialHeap<K> link(BinomialHeap<K> other);
...

}
class PList<T> {

static <T> PList<T> addFront(T first, PList<T> rest);
static <T> T getFirst(PList<T> n);
static <T> PList<T> getNext(PList<T> n);
...

}
class BinomialQueue<K> {

static <K> PList<BinomialHeap<K>>
insert(BinomialHeap<K> n, PList<BinomialHeap<K>> ns) {

if (ns == null) {

return ___(a)___;
} else {

if (n.height < ___(b)___) {
return PList.addFront(n, ns);

} else if (n.height == PList.getFirst(ns).height) {

return insert(___(c)___, PList.getNext(ns));
} else {

PList<BinomialHeap<K>> rest = insert(n, ___(d)___);

return PList.addFront(___(e)___, rest);
}

}
}
...

}

Page 2 of 12

H343 Data Structures Final Fall 2021

Name:

Solution: (2 points each)

(a) PList.addFront(n, null)
(b) PList.getFirst(ns).height
(c) n.link(PList.getFirst(ns))
(d) PList.getNext(ns)
(e) PList.getFirst(ns)

Page 3 of 12

H343 Data Structures Final Fall 2021

Name:

3. 12 points Apply the Partition algorithm to the following array, ensuring that all ele-
ments less or equal to the pivot element are in lower positions and all elements greater
than the pivot are in greater positions. The pivot element starts out as the last element
of the array. Write down the initial array and the array after each step (each iteration
of the loop), drawing two vertical lines to separate the three partitions (the less-than or
equal region, the greater-than region, and the to-do region).

[9, 5, 7, 1, 5]

Solution:

[|| 9, 5, 7, 1 | 5] (2 points)

[| 9 | 5, 7, 1 | 5] (2 points)

[5 | 9 | 7, 1 | 5] (2 points)

[5 | 9, 7 | 1 | 5] (2 points)

[5, 1 | 7, 9 || 5] (2 points)

[5, 1 | 5 | 9, 7] (2 points)

Page 4 of 12

H343 Data Structures Final Fall 2021

Name:

4. 8 points The following questions are about the Adjacency Matrix representation of
graph with n nodes and m edges.

1. What is the time complexity of inserting an edge between two given nodes?

2. What is the time complexity of removing an edge between two given nodes?

3. What is the time complexity of inspecting all the out-edges of one node?

4. How much space does the Adjacency Matrix consume? (answer using big-O)

Solution: (2 points each)

1. O(1)

2. O(1)

3. O(n)

4. O(n2)

Page 5 of 12

H343 Data Structures Final Fall 2021

Name:

5. 12 points What is an optimal DNA sequence aligment for the sequences AGCT and
ACG? When computing the score, use +2 for a match, -2 for a mismatch, and -1 for the
gap penalty. Show your work by filling in the below dynamic programming table.

A G C T

A

C

G

Solution: One of several solutions is

AGCT_

A_C_G

A G C T
0 ←-1 ←-2 ←-3 ←-4

A ↑-1 ↖ 2 ←1 ←0 ←-1
C ↑-2 ↑1 ↑0 ↖3 ←2
G ↑-3 ↑0 ↖3 ↑2 ↑1

(3 points for correct initialization of the table. 6 points for the rest of the table. 3
points for correct result from traceback.)

Page 6 of 12

H343 Data Structures Final Fall 2021

Name:

6. 10 points Perform depth-first search on the following graph, marking the edges in the
depth-first forest and recording the discover time and finish time for each node that is
visited by the DFS. Start the times at 1. When choosing the order in which to process
and visit nodes, give priority to nodes that are earlier in the alphabet (a before b).

a // b

��

coo j

��
d

��

//

OO

e // f

��

OO

k

��
g // h

OO

ioo loo

Solution:

(6 points for a correct depth-first forest, 4 points for correct discover/finish times)

a : 1/14 +3 b : 2/13

��

c : 5/6oo j : 19/24

��
d : 15/18

��

//

OO

e : 3/12 +3 f : 4/11

��

KS

k : 20/23

��
g : 16/17 // h : 8/9

OO

i : 7/10ks l : 21/22oo

Page 7 of 12

H343 Data Structures Final Fall 2021

Name:

7. 10 points Fill in the blanks to complete the following implementation of Breadth-First
Search for the Routing Wires project. The BFS function should return true if it finds a
path from the start to the end of endpoints and returns false otherwise. BFS should
record the path in the parents map. Recall that the Board class has a method named
adj that returns the list of adjacent coordinates of the given coordinate. The Queue

class has methods add and remove for pushing and popping elements from the queue.

static boolean
BFS(Board board, Endpoints endpoints, Map<Coord, Coord> parents) {

Queue<Coord> queue = new LinkedList<>();
Set<Coord> visited = new HashSet<>();

___(a)___;
while (!queue.isEmpty()) {

Coord current = ___(b)___;
visited.add(current);
if (current.equals(endpoints.end))
return true;

for (Coord adj : ___(c)___) {
if ((board.getValue(adj) == 0 || adj.equals(endpoints.end))

&& ___(d)___) {

queue.add(adj);

parents.put(adj, ___(e)___);
}

}
}
return false;

}

Solution: (2 points each)

(a) queue.add(endpoints.start)
(b) queue.remove()
(c) board.adj(current)
(d) ! visited.contains(adj)
(e) current

Page 8 of 12

H343 Data Structures Final Fall 2021

Name:

8. 10 points What is the time complexity of building a Huffman Tree given a frequency
table for n characters. Explain your answer.

Solution:

1. Fill an array with the n single-character trees: O(n). (2 points)

2. Turn the array into a heap: O(n). (2 points)

3. While there is more than one tree in the heap, pop two, combine them, and
push them back into the heap. The push and pop into the heap is O(log n),
and we do that O(n) times, so this step is O(n log n). (4 points)

The max of the three steps is O(n log n), so the total time complexity is O(n log n).
(2 points)

Page 9 of 12

H343 Data Structures Final Fall 2021

Name:

9. 7 points Find the connected components of the following graph using Disjoint Sets, but

without optimizations (no path compression, no union-by-rank). Draw the Disjoint Sets
forest after each union operation. Process the edges of the graph in the order written
on the edges, i.e. start with edge a−b, then c−f , etc. When choosing a new root, give
priority to nodes that are lower in the alphabet.

a 1 b

4

5 c

2

d 3 e f

Solution: (1 point each)

Union a− b:
a
��

boo c
��

d
��

e
��

f
��

Union c− f :
a
��

boo c
��

d
��

e
��

f

OO

Union d− e:
a
��

boo c
��

d
��

eoo f

OO

Union b− f :
a
��

boo c
xx

d
��

eoo f

OO

Union b− c: (do nothing)
a
��

boo c
xx

d
��

eoo f

OO

The connected components are: {a, b, c, f} and {d, e}. (2 points)

Page 10 of 12

H343 Data Structures Final Fall 2021

Name:

10. 10 points Fill in the blanks to complete the following implementation of the Rod Cut-
ting algorithm. Recall that it solves the optimization problem of cutting a rod of length
n into smaller pieces in a way that maximizes the total amount that the smaller pieces
can be sold for. The array P maps rod lengths to their market price. The algorithm fills
in the array R, which maps each possible input rod length to a CutResult object. The
algorithm returns the best CutResult.

class CutResult {
CutResult(int c, int amt, CutResult r) { cut = c; price = amt; rest = r; }
int cut;
int price;
CutResult rest;

}

static CutResult cut_rod(int[] P, int n, CutResult[] R) {
if (R[n] != null) {

return ___(a)___;
} else if (n == 0) {

R[n] = new CutResult(0, 0, null);
return R[n];

} else {
CutResult best = null;
for (int i = 1; i != n+1; ++i) {

CutResult rest = ___(b)___;
int price = P[i] + rest.price;

if (best == null || ___(c)___) {

best = ___(d)___;
}

}

___(e)___
return best;

}
}

Solution: (2 points each)

(a) R[n]
(b) cut_rod(P, n - i, R)
(c) best.price < price
(d) new CutResult(i, price, rest)
(e) R[n] = best;

Page 11 of 12

H343 Data Structures Final Fall 2021

Name:

11. 3 points What advice would you give a student taking Data Structures next year?

Solution: Open ended.

Page 12 of 12

