Idea: use binary trees to implement the Set interface, such that doing a search for an element is like doing binary search.
The Binary-Search-Tree Property: For every node x in the tree,
y.data < x.data
, andx.data < z.data
.We are considering BSTs that do not allow duplicates.
We can also use BSTs to implement the Map interface (aka. “dictionary”).
interface Map<K,V> {
V get(K key);
V put(K key, V value);
V remove(K key);
boolean containsKey(K key);
}
Code for this lecture can be downloaded here.
BinarySearchTree
is like BinaryTree
(has a root
) but also
has a lessThan
predicate for comparing elements.
We define Node
as a class nested inside BinarySearchTree
for
convenience:
public class BinarySearchTree<K> {
static class Node<K> {
K data;
Node<K> left, right;
// ...
}
Node<K> root;
protected BiPredicate<K, K> lessThan;
// ...
}
find
, search
, and contains
methods of BinarySearchTree
Book 4.3.1.
Example: Search for 6, 9, 15 in the following tree:
8
/ \
/ \
3 10
/ \ \
1 6 14
/ \ /
4 7 13
The find()
method looks for the node with the specified key; if there is none,
the parent of where such a node would be.
protected Node<K> find(K key, Node<K> curr, Node<K> parent) {
if (curr == null)
return parent;
else if (lessThan.test(key, curr.data))
return find(key, curr.left, curr);
else if (lessThan.test(curr.data, key))
return find(key, curr.right, curr);
else
return curr;
}
The search()
method looks for the specified key and returns the node
if the key is found.
public Node<K> search(K key) {
Node<K> n = find(key, root, null);
if (n != null && n.data.equals(key))
return n;
else
return null;
}
The contains()
method returns true if the key is found and false otherwise.
public boolean contains(K key) {
Node<K> p = search(key);
return p != null;
}
What is the time complexity? $O(h)$, where $h$ is the height of the tree.
insert
method of BinarySearchTree
Book 4.3.3.
Similarly we can perform insertions on BSTs. The insert()
method takes
the key to add to the tree and returns the new root.
public Node<K> insert_rec(K key) {
root = insert_helper(key, root);
return root;
}
private Node<K> insert_helper(K key, Node<K> curr) {
if (curr == null)
return new Node<>(key, null, null);
else if (lessThan.test(key, curr.data))
curr.left = insert_helper(key, curr.left);
else if (lessThan.test(curr.data, key))
curr.right = insert_helper(key, curr.right);
else
; // duplicate; do nothing
return curr;
}
What is the time complexity? $O(h)$, where $h$ is the height of the tree.
find
Insert into a binary search tree using the find
method. Return the inserted node,
or null if the key is already in the tree.
Fill in the blanks:
public Node<K> insert(K key) {
Node<K> n = find(key, root, null);
if (n == null){
// ?
return /* ? */;
} else if (lessThan.test(key, n.data)) {
// ?
return /* ? */;
} else if (lessThan.test(n.data, key)) {
// ?
return /* ? */;
} else
return null; // duplicate
}
remove
method of BinarySearchTree
Book 4.3.4.
| |
z=o A
\ ==>
A
| |
z=o A
/ ==>
A
|
z=o
/ \
A B
The main idea is to replace z with the node after z, which is the first node y in subtree B. We then recursively delete y from B.
What is the time complexity? $O(h)$, where $h$ is the height.
Solution for remove()
(similar to book Figure 4.25):
public void remove(K key) {
root = remove_helper(root, key);
}
private Node remove_helper(Node<K> curr, K key) {
if (curr == null) {
return null;
} else if (lessThan.test(key, curr.data)) { // remove in left subtree
curr.left = remove_helper(curr.left, key);
return curr;
} else if (lessThan.test(curr.data, key)) { // remove in right subtree
curr.right = remove_helper(curr.right, key);
return curr;
} else { // remove this node
if (curr.left == null) {
return curr.right;
} else if (curr.right == null) {
return curr.left;
} else { // two children, replace with first of right subtree
Node<K> min = curr.right.first();
curr.data = min.data;
curr.right = remove_helper(curr.right, min.data);
return curr;
}
}
}