
Data Structures
CSCI C343, Fall 2017 Final Exam [A]

Name:

This exam has 12 questions, for a total of 100 points.

1. 6 points Given the following tree for a Huffman code

0

ww
1

''
0

ww
1

''

A

0
}}

1

0
��

1
��

D
0
��

1
��

E V

K R

decode the following string:

1011100010010010000101100111

Solution: (0.5 point per correct letter)

AVADAKEDAVRA

2. 8 points Draw a Binomial Priority Queue containing the following integers, where the

smaller integers are given priority over larger ones (i.e., the binomial trees are min heaps).

t3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 20u

Solution: Here’s one possible solution.

4 3

�� ��

5

�� ((**6

��

10 9

�� !!

12

��

7

8 11

��

15 14

20

• Does the binomial queue contain all the elements? (1 point)

C343 Data Structures Final Exam Fall 2017

Name:

• Does the result satisfy the min heap property? (2 points)

• Is each tree a valid binomial tree? (3 point)

• Are the trees all of different sizes? (2 points)

Page 2 of 13

C343 Data Structures Final Exam Fall 2017

Name:

3. 8 points Apply the Partition algorithm to the following array, ensuring that all ele-
ments less or equal to the pivot element are in lower positions and all elements greater
than the pivot are in greater positions. The pivot element starts out as the last element
of the array. Write down the array after each step (each iteration of the loop), drawing
two vertical lines to separate the three partitions (the less-than or equal region, the
greater-than region, and the to-do region).

r4, 8, 7, 2, 9, 5s

Solution:

r|| 4, 8, 7, 2, 9 | 5s

r4 || 8, 7, 2, 9 | 5s (1 point)

r4 | 8 | 7, 2, 9 | 5s (1 point)

r4 | 8, 7 | 2, 9 | 5s (1 point)

r4, 2 | 7, 8 | 9 | 5s (2 points)

r4, 2 | 7, 8, 9 || 5s (1 point)

r4, 2 | 5 | 8, 9, 7s (2 points)

4. 12 points Fill in the blanks to complete the following implementation of the fillCache
method that applies dynamic programming to complete the best alignment between two
DNA sequences.

private void fillCache() {
String x = ” ” + this.x, y = ” ” + this.y;
int n = x.length(), m = y.length();
cache[0][0] = new Result((a) , Direction.NONE);
for (int col = 1; col < m; col++)

cache[0][col] = new Result((b) , Direction.LEFT);
for (int row = 1; row < n; row++)

cache[row][0] = new Result(judge.getGapCost() ∗ row, Direction.UP);
for (int row = 1; row < n; row++) {

for (int col = 1; col < m; col++) {
char nextX = x.charAt(row), nextY = y.charAt(col);
int diag = cache[row ´ 1][col ´ 1].getScore() + (c) ;
int left = cache[row][col ´ 1].getScore() + judge.score(Constants.GAP CHAR, nextY);
int up = (d) .getScore() + judge.score(nextX, Constants.GAP CHAR);
Result best = new Result(diag, Direction.DIAGONAL);
if (left > best.getScore())

best = new Result(left, (e));
if (up > best.getScore())

best = new Result(up, Direction.UP);

Page 3 of 13

C343 Data Structures Final Exam Fall 2017

Name:

cache[row][col] = (f) ;
}

}
}

Solution: (2 points each)

(a) 0
(b) judge.getGapCost() ∗ col
(c) judge.score(nextX, nextY)
(d) cache[row ´ 1][col]
(e) Direction.LEFT
(f) best

Page 4 of 13

C343 Data Structures Final Exam Fall 2017

Name:

5. 10 points Apply Dijkstra’s shortest paths algorithm to the following graph, starting at
vertex d. Show your work by recording what the priority queue looks like and which
vertex gets popped at each iteration of the algorithm. Indicate the resulting shortest
paths tree by making the tree edges into solid lines. Next to each vertex, write the
distance of the shortest path from d to that vertex.

a
1 // b

2

��

c
3

oo

d

4

��

5 //

6

OO

e 3 // f

8

��

1

OO

g 10 // h

11

OO

i
12

oo

Solution: The priority queue at each step: (3 points)

tg : 4, a : 6, e : 5u pop g

te : 5, a : 6, h : 14u pop e

ta : 6, f : 8, h : 14u pop a

tb : 7, f : 8, h : 14u pop b

tf : 8, h : 14u pop f

tc : 9, h : 14, i : 16u pop c

th : 14, i : 16u pop h

ti : 16u pop i

The shortest paths tree and shortest distances from i to all the other vertices:
(4 points for the correct tree)
(3 points for the correct distances)

a6 +3 b7

��

c9oo

d0

��

+3

KS

e5 +3 f 8

��

KS

g4 +3 h14

OO

i16oo

Page 5 of 13

C343 Data Structures Final Exam Fall 2017

Name:

6. 12 points Implement a dynamic programming (aka. bottom-up) solution to the rod-
cutting problem. You are given a rod of length n and an array of prices P that maps
rod-lengths to dollars. Return the maximum amount of money that you can obtain by
cutting the rod into pieces and selling those pieces.

class RodCutting {
static int max from rod cutting(int[] P, int n) {

Solution:

static int max from rod cutting(int[] P, int n) {
int[] R = new int[n+1];
R[0] = P[0]; // (1 point) R[0] = 0; ok too
for (int j = 1; j != n+1; ++j) { // (1 point)

int best = 0; // (1 point)
for (int i = 1; i != j+1; ++i) { // (1 point)

int sales = P[i] + R[j ´ i]; // (3 points)
if (best < sales) // (2 point)

best = sales;
}
R[j] = best; // (1 point)

}
return R[n]; // (2 points)

}

Page 6 of 13

C343 Data Structures Final Exam Fall 2017

Name:

7. 6 points Draw the adjacency list representation of the following directed graph.

0
((
1hh

��

2oo

3

@@

//

OO

4

OO

��

5

��
6

OO

7 8

^^

Solution: (0.5 point per correct edge)

0 // 1

1 // 0 // 5

2 // 1

3 // 0 // 1 // 4

4 // 1 // 6

5 // 8

6 // 3

7

8 // 4

8. 10 points Fill in the blanks to complete the following implementation of Counting Sort.
The elements of A are integers in the range of 0 to k.

static void counting sort(int[] A, int[] B, int k) {
int[] C = new int[k+1]; // The count for each element of A
int[] L = new int[k+1]; // L[j] == number of elements less or equal j.
for (int i = 0; i != A.length; ++i) {

++C[(a)];
}
L[0] = C[0];
for (int j = 1; j != (b) ; ++j) {

L[j] = (c) + L[j´1];
}
for (int j = (d) ; j != ´1; ´´j) {
int elt = A[j];
int num le = L[elt];
B[(e)] = elt;
L[elt] = num le ´ 1;

Page 7 of 13

C343 Data Structures Final Exam Fall 2017

Name:

}
}

Solution: (2 points each)

(a) A[i]
(b) k + 1 or L.length
(c) C[j]
(d) A.length ´ 1
(e) num le ´ 1

Page 8 of 13

C343 Data Structures Final Exam Fall 2017

Name:

9. 6 points What is the big-O time complexity of the Breadth-First Search algorithm
shown below given a graph G with n vertices and m edges? Give a detailed argument in
support of your answer and give the tightests (lowest) bound that you can. Note that
for certainly applications, m may be much less than n2, which is why m is a separate
parameter to the time complexity.

static <V> void bfs(Graph<V> G, V start, Map<V,Boolean> visited, Map<V,V> parent){
for (V v : G.vertices())

visited.put(v, false);
Queue<V> Q = new LinkedList<V>();
Q.add(start);
parent.put(start, start);
visited.put(start, true);
while (! Q.isEmpty()) {

V u = Q.remove();
for (V v : G.adjacent(u))

if (! visited.get(v)) {
parent.put(v, u);
Q.add(v);
visited.put(v, true);

}
}

}

Solution: The total time complexity is Opm ` nq. The first for loop is Opnq (1
point). Regarding the while loop, here are two analyses, with the second being more
precise and worth more points.

• 2 points: The while loop does at most n iterations because each vertex in the
graph may be inserted and then removed just once from the queue (1 point).
The inner for loops does at most n iterations each time, for which one could
deduce the bound of Opn2q for the entire while loop (1 point).

• 3 points: Each edge in the graph is only considered once by the combination
of the while and nested for loop, so the time complexity is Opmq.

Thus, combining the cost of the first for loop and the while loop, we have Opn`mq
(2 points).

Page 9 of 13

C343 Data Structures Final Exam Fall 2017

Name:

10. 10 points Five new islands have appeared in the Florida Keys due a mysterious drop
in ocean levels and the government wants to build bridges to connect them so that
each island can be reached from any other one via one or more bridges. The cost of
constructing a bridge is proportional to its length. The distances in miles between
pairs of islands are given in the following table, in which the islands are named A
through E. State which bridges to build so that the total construction cost is minimized.
Additionally, state the total cost.

A B C D E
A - 25 21 35 28
B - - 26 15 22
C - - - 27 8
D - - - - 16
E - - - - -

Solution: This solution applies Kruskal’s algorithm to compute the minimum span-
ning tree (MST). (3 points)

The first step is to order the edges by weight: (2 points)

p8qC ´ E, p16qD ´ E, p15qB ´D, p21qA´ C, p22qB ´ E, p25qA´B, p26qB ´ C,

p27qC ´D, p28qA´ E, p35qA´D

Next we process each edge, deciding to make it part of the MST or not, depending
on whether the endpoints of each edge are in different disjoint sets.

C ´ Epyesq, D ´ Epyesq, B ´Dpyesq, A´ Cpyesq, B ´ Epnoq, A´Bpnoq, B ´ Cpnoq,

C ´Dpnoq, A´ Epnoq, A´Dpnoq

So we build the bridges as indicated by the “yes” answers above. (3 points)
The total cost is 60. (2 points)

Page 10 of 13

C343 Data Structures Final Exam Fall 2017

Name:

11. 9 points Change the following implementation of the disjoint sets data structure to
implement path compression and union by rank.

public class UnionFind<N> {
Map<N,N> parent;

public UnionFind() {
parent = new HashMap<>();

}

public void make set(N x) {
parent.put(x, x);

}

public N find(N x) {
if (x == parent.get(x))

return x;
else {

return find(parent.get(x));
}

}

public N union(N x, N y) {
N rx = find(x);
N ry = find(y);
parent.put(ry, rx);
return rx;

}
}

Solution:

public class UnionFind<N> implements DisjointSets<N> {
Map<N,N> parent;
Map<N,Integer> rank; // (1 point)

public UnionFind() {
parent = new HashMap<>();
rank = new HashMap<>(); // (1 point)

}

public void make set(N x) {
parent.put(x, x);
rank.put(x, 0); // (1 point)

}

public N find(N x) {

Page 11 of 13

C343 Data Structures Final Exam Fall 2017

Name:

if (x == parent.get(x))
return x;

else {
N rep = find(parent.get(x));
parent.put(x, rep); // (3 points)
return rep;

}
}

public N union(N x, N y) {
N rx = find(x);
N ry = find(y);
if (rank.get(rx) > rank.get(ry)) { // (2 points)

parent.put(ry, rx);
return rx;

} else {
parent.put(rx, ry);
if (rank.get(ry) == rank.get(rx))

rank.put(ry, rank.get(ry) + 1); // (1 point)
return ry;

}
}

}

Page 12 of 13

C343 Data Structures Final Exam Fall 2017

Name:

12. 3 points What advice would you give a student taking C343 Data Structures next year?

Solution: Open ended.

Page 13 of 13

